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Decision support systems halve fungicide use
compared to calendar-based strategies without
increasing disease risk
Elena Lázaro 1✉, David Makowski 2 & Antonio Vicent 1✉

The European Green Deal aims to reduce the use of chemical pesticides by half by 2030.

Decision support systems are tools to help farmers schedule fungicide spraying based on

disease risk and can reduce fungicide application frequency and overall use. However, the

potential benefit of decision support systems compared to traditional calendar-based stra-

tegies has not yet been rigorously quantified. Here we synthesise 80 experiments and show

that globally decision support systems can reduce fungicide treatments by at least 50%

without compromising disease control. For a given fixed number of fungicide sprays, decision

support systems were as effective as calendar-based programs in reducing disease incidence.

When the number of sprays was halved, the increase in disease incidence was lower for

decision support system-based strategies than calendar-based strategies. Our findings sug-

gest that decision support systems can reduce fungicide use while limiting the risk to plant

health and resistance development.
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Annual sales of pesticides in the European Union (EU)
amounted to almost 360,000 tonnes, with a 46% share of
fungicides as the most sold group1. Even with the

deployment of resistant cultivars and integrated control strategies,
fungicides still contribute heavily to plant disease control in
conventional farming2. Even organic systems, although promoted
for their environmental benefits, also depend on fungicides. In
these systems, the amounts applied are sometimes high to com-
pensate for lower efficacy3. Recently, new fungal plant diseases
have emerged worldwide associated with the globalisation of
trade and environmental change4, thus further increasing farm-
ers’ dependency on fungicides. Nevertheless, their use in agri-
culture has been associated with growing environmental5 and
public health6 concerns. In addition to their negative environ-
mental impacts (e.g., on biodiversity7), some fungicides have been
associated with increased risk to human health, particularly
among farmers but also among people living in the vicinity of
agricultural areas 8–10.

To promote more sustainable agricultural systems, EU Direc-
tive 2009/128/EC established several key principles to reduce
pesticide use, fostering the adoption of prevention measures, non-
chemical control methods, and chemical compounds with lower
environmental impacts. Importantly, according to this Directive,
any control intervention should in principle be based on field
monitoring and trigger thresholds in order to reduce doses and
treatment frequencies, thus limiting the risk of the development
of pathogen resistance. The willingness to reduce the use of
pesticides and especially fungicides was again highlighted in the
‘from farm to fork’ strategy of the European Green Deal, which
targets a reduction in the use of chemical pesticides by half by
203011. Nevertheless, despite this regulatory framework, the
amount of fungicides sold annually in the EU increased by up to
11% in the period 2011–20181.

Fungicide use in agriculture can be slightly reduced with
improved spray application methods12, but to achieve a more
substantial reduction a drastic decrease in the number of appli-
cations is essential. Decision support systems (DSSs) have been
put forward as tools to substantially lower pesticide application
frequency. In contrast to calendar-based fungicide programs,
DSSs allow farmers to schedule fungicide applications based on
an observed or a predicted risk of disease and thus spray only
when necessary13. Numerous field experimental studies have been
carried out to assess the performances of DSSs for different crops,
diseases, and regions. However, to date, the whole set of data
obtained in these experiments has not been compiled and sub-
jected to rigorous statistical analysis to quantify the benefits
resulting from the use of DSSs.

Our meta-analysis of 80 independent experiments conducted
worldwide indicated that, for a given fixed number of fungicide
sprays, DSSs were as effective as calendar-based programs (or
more so) in reducing disease incidence for a wide range of crop
species, fungal pathogens, types of fungicide and regions. When
the number of sprays was halved, the resulting increase in disease
incidence was greatly mitigated with a strategy based on DSSs
rather than on calendars.

Our analysis thus shows that DSSs are essential tools for
reducing fungicide use while limiting plant health risk and may
help achieve the goals of the European Green Deal11. In addition
to reducing the economic cost and environmental impact of
disease control, the reduction in the number of sprays resulting
from the use of DSSs also decreases the risk of developing
resistance, thereby prolonging the effective life of the fungicides14.
Ensuring the credibility of DSSs is essential to overcome produ-
cers’ aversion to perceived risks and thus make their application
more widespread15,16.

Results
Data description. Our dataset includes the results of 80 inde-
pendent experiments reported in 22 articles published from
1982–2015 that compare the efficacy of calendar-based and DSS-
based strategies in reducing fungal disease incidence with fungi-
cide treatments. Each experiment included data collected for at
least one calendar-based strategy, one DSS-based strategy, and an
untreated control plot. The dataset includes a total of 328 disease
incidence data items collected for 80 untreated controls, 99
calendar-based strategies, and 149 DSS-based strategies (Supple-
mentary Table S1).

The dataset included a total of 16 core DSSs, with additional
modifications and different action thresholds. The DSSs com-
prised both empirical (correlative) and mechanistic (process-
based) modelling approaches. Empirical models were mostly built
using disease and weather observations in the field whereas
mechanistic models were developed from controlled experiments
to quantify the effects of environmental factors on the different
components of the disease cycle. The environmental variables
used to predict disease risk in the core DSSs were air temperature
(14 out of 16), leaf wetness duration (11 out of 16), rainfall (7 out
of 16), relative humidity (5 out of 16), solar radiation (2 out of 16)
and wind speed (1 out of 16). The DSSs included a median of 2
environmental variables, with a minimum of 1 and a maximum
of 5. Two DSSs included crop phenology and one also inoculum
levels (Supplementary Table S2).

The experiments were located in South America (Brazil, n= 7
experiments), North America (Canada and USA, n= 51), and
Europe (Italy, Lithuania, and Spain, n= 19) (Supplementary
Table S3 and Supplementary Fig. S1a). The locations of the
experiments covered 6 Köpen-Geiger climate classes17,18: Aw
(equatorial with dry winter), Cfa (warm temperate, fully humid,
hot summer), Csa (warm temperate, dry and hot summer), Csb
(warm temperate, dry and warm summer), Dfa (snow, fully
humid, hot summer) and Dfb (snow, fully humid, warm summer)
(Supplementary Data 1). The experiments targeted different
crops, pathogens, and fungicides. A total of n= 44 experiments
were conducted on non-woody crops, including wheat, asparagus,
lettuce, strawberry, and tomato. The remaining n= 36 experi-
ments were conducted on woody crops, including apple, pear,
grape, and mandarin (Supplementary Table S3 and Supplemen-
tary Fig. S1b).

The dataset covered both fungal and fungal-like pathogens
from the classes of the Dothideomycetes (Alternaria alternata, A.
solani, Stemphylium vesicarium, Cercospora asparagii, Schizothyr-
ium jamaicense, Peltaster fructicola), Sordariomycetes (Fusarium
graminearum, Colletotrichum coccodes), Leotiomycetes (Botrytis
cinerea), Agaricomycetes (Rhizoctonia solani) and Oomycetes
(Bremia lactucae, Plasmopara viticola). The Dothideomycetes was
the most represented fungal class with n= 38 experiments and
the Agaricomycetes was the least represented, with n= 3. These
pathogens were causing the following diseases: Alternaria brown
spot of mandarin, an early blight of tomato, brown spot of pear,
Cercospora blight of asparagus, flyspeck and a sooty blotch of
apple, Fusarium head blight of wheat, anthracnose of tomato, a
grey mould of strawberry, Rhizoctonia fruit rot of tomato, downy
mildew of lettuce and downy mildew of grape (Supplementary
Table S3 and Supplementary Fig. S1c).

The most common spray programs in the experiments were
those with non-systemic fungicides (n= 42) while only n= 7
experiments included programs with systemic fungicides alone.
In the remaining n= 31 experiments, programs combined non-
systemic and systemic fungicides. The non-systemic group
included phthalimides (captan), dithio-carbamates (mancozeb,
maneb, thiram), inorganics (copper hydroxide), chloronitriles
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(chlorothalonil), and phenylpyrroles (fludioxonil). The systemic
group included demethylation inhibitors (tebuconazole), methyl
benzimidazole carbamates (thiophanate-methyl), the quinone
outside inhibitors (kresoxim-methyl, pyraclostrobin, trifloxystro-
bin), phosphonates (fosetyl-Al), phenylamides (metalaxyl), dicar-
boximides (procymidone), succinate-dehydrogenase inhibitors
(boscalid), and anilino-pyrimidines (cyprodinil) (Supplementary
Table S3). These fungicides covered all FRAC19 categories with
regard to resistance risk: low risk (FRAC codes M01, M03, M04,
M05, and P07), low to medium risk (FRAC code 12), medium
risk (FRAC codes 3 and 9), medium to high risk (FRAC codes 2
and 7) and high risk (FRAC codes 1, 4 and 11) (Supplementary
Data 1).

The spread of the disease incidence data was very large, ranging
from 1.5% to 100% in the untreated controls (Fig. 1a), revealing
the presence of experiments with very low, moderate, and very

high disease pressure in the dataset. Disease incidences were
lower in calendar-based and DSS-based strategies than in their
untreated counterparts in the majority of the experiments (Fig. 1a,
b). This observation remained valid when considering different
subgroups of experiments corresponding to different locations,
crops, pathogens, or types of fungicide (Supplementary
Figs. S2–S5). The number of sprays ranged from 0–25 across
the whole set of experiments and were generally higher in
calendar-based strategies than in DSS-based strategies (Fig. 1c).
In contrast, the differences in disease incidence between DSS-
based and calendar-based strategies were generally small and
often very close to 0 (Fig. 1d).

Meta-analysis of disease incidences under different control
strategies. According to our baseline statistical model MI0 (see
Methods, Eq. (3)), the estimated average levels of reduction in

Fig. 1 Observed disease incidences and numbers of sprays in the 80 experiments. (a) Individual (per experiment) and overall distribution of disease
incidence data for untreated (Unt), calendar-based (Cal) and DSS-based strategies (DSS); (b) individual and overall distribution of the measured
differences in incidence between Cal vs. Unt (Cal-Unt), DSS vs. Unt (DSS-Unt) and DSS vs. Cal (DSS-Cal) strategies; (c) individual and overall distribution
of the numbers of sprays with Cal and DSS strategies and observed reduction in the number of sprays between DSS vs. Cal strategies; (d) observed
difference in disease incidence vs. reduction in the number of sprays for DSS vs. Cal strategies. Each point represents a pair of plots (DSS, Cal) within the
same experiment. Box-and-whisker plot elements for (a)–(d): central line represents the median value; box limitis represents the first (Q1) and the third
(Q3) quantiles; upper whisker represents min(max(x),Q3+ 1.5 IQR; lower whisker represents max(min(x), Q1− 1.5 IQR; IQR=Q3−Q1; outliers are
represented by dots.
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disease incidence compared to untreated controls did not differ
by more than a few percent between the calendar-based and DSS-
based strategies. Specifically, the calendar-based strategy led to a
reduction in disease incidence of−33.3%, 95% CrI =
[−42.8%,−24.1%] compared to the untreated controls, while the
DSS-based strategy led to a reduction of− 30.9%, 95% CrI =
[− 39.9%,−22.2%], on average over all experiments (Fig. 2a). The
average disease incidence was higher by +2.3%, 95% CrI =
[+0.8%, +4.1%] with DSSs vs. calendars (Fig. 2a), revealing a
slightly higher disease incidence with the DSSs. These results were
confirmed when disease incidence ratios were considered instead
of differences in disease incidence (Supplementary Fig. S7a).
Because of a large between-experiment variability (see Methods),

the predictive intervals were much larger than the credible intervals
(Fig. 2b). Indeed, predictive intervals reflect the plausible range of
values that could be obtained in a new, not yet conducted,
experiment and their sizes depend on the extent of the between-
experiment variability. Here, the predictive intervals of the levels of
reduction in disease incidence (differences calendar vs. untreated
and DSS vs. untreated) were 95% PI = [−80.4%, +6.0%] and 95%
PI = [−75.0%, +6.3%] for the calendar-based and DSS-based
strategies, respectively. Although large, these intervals do not differ
much between the two strategies considered, thus confirming the
similarity of the levels of disease incidence that could be expected
with these two types of strategy across a large range of conditions.
Alternative meta-analytic models that evaluated the effect of the
moderator variables (location, crop, pathogen, or fungicide cate-
gories, see Methods and Supplementary Tables S3 and S5) were
fitted and compared for their adequacy to the data (Supplementary
Fig. S6). None of them led to a substantial change in the results
(Supplementary Table S6).

Disease incidence as a function of the number of sprays. The
joint effect of the number of sprays and the fungicide strategy was
evaluated considering the baseline disease incidence–number of
sprays model (MIS0) (Eq. (5)), after checking that the adequacy
and performance of the models were satisfactory (Supplementary
Fig. S8) and that the moderator variables (i.e., location, crop,
pathogen and fungicide) were not influential (Supplementary
Tables S3 and S8). The medians of the numbers of sprays
observed with the DSS-based and calendar-based strategies across
the 80 experiments were equal to 4 and 7, respectively. The dif-
ference between these two median values corresponds to a 43%
reduction in the number of sprays with the DSS-based strategy
compared to the calendar-based strategy. For these median
numbers of sprays, the estimated average difference in disease
incidence between DSS and calendar was equal to +2%, 95% CrI
= [−1%, +6%] and was not substantially different from zero
(Fig. 3a). The same conclusion was obtained when using the first
(Q1) and third (Q3) quartiles of the observed distributions of the
number of sprays for DSS-based (3 and 6 sprays) and calendar-
based (4 and 10 sprays) strategies (Fig. 3a) instead of the medians.
These findings were further confirmed using the disease incidence
ratio data instead of the differences (Supplementary Fig. S9). All
these results concur to indicate that the use of DSSs allows for a
meaningful reduction in the number of sprays without any
noticeable impact on the disease incidence. The predictive
intervals showed wider amplitude than credible intervals (Fig. 3b
and Supplementary Fig. S9b), although they resulted in similar
levels of disease incidence with a reduction of up to 43% in the
number of sprays in the calendar-based strategies with respect to
those based on DSS.

We further compared the DSS-based and calendar-based
strategies considering a hypothetical scenario in which both
strategies were implemented using exactly the same number of
sprays. This number of sprays was set equal to different values
ranging from 0 to 25 successively and the difference in disease
incidence obtained with the two strategies (DSS vs. calendar) was
estimated with our statistical model for each value considered.
The estimated difference in incidence DSS vs. calendar was
negative from 0 to 18 sprays, reaching its maximum (−5.4%, 95%
CrI = [−10.2%,−1.4%]) with 3 sprays (Fig. 4a), and then became
not greatly different from zero when the number of sprays
exceeded 18. These results reveal that there is an intrinsic
advantage in using DSSs and that, for a given number of sprays
(in the range 0–21), a lower level of disease incidence could be
achieved by adopting a DSS-based strategy instead of a calendar-
based strategy.
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Fig. 2 Probability distributions of differences in disease incidence
between calendar-based strategies (Cal), DSS-based strategies (DSS)
and untreated controls (Unt). Differences were computed for Cal vs. Unt
(Cal-Unt), DSS vs. Unt (DSS-Unt) and DSS vs. Cal (DSS-Cal) strategies.
While (a) describes the distributions of the expected differences across the
experiments included in the dataset, (b) describes the plausible difference
values predicted for a new, not yet conducted, experiment. Both types of
the probability distribution are summarised by their medians, 95%
probability intervals and probability of the differences being positive. CrI
and PI mean credibility and predictive intervals, respectively. P(>0)
indicates the probabilities of the differences being positive. Results show
that the levels of reduction in disease incidence achieved with DSS and Cal
compared to Unt are very similar (median reductions of −33 and −31%
with Cal and DSS, respectively), although the reduction is slightly higher
with Cal.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00291-8

4 COMMUNICATIONS EARTH & ENVIRONMENT |           (2021) 2:224 | https://doi.org/10.1038/s43247-021-00291-8 | www.nature.com/commsenv

www.nature.com/commsenv


Finally, we assessed the consequences of halving the number of
fungicide sprays recommended by the calendar-based strategies. To
do so, we considered two scenarios. In the first one, we assumed
that the 50% reduction was achieved by adopting a DSS-based
strategy (scenario DSS50%) instead of a calendar-based strategy. In
the second one, we assumed that the 50% reduction was achieved
by using a calendar-based strategy (CAL50%). In the first scenario,
the resulting estimated average increase in disease incidence never
exceeded +5.1% (95% CrI= [+1.2%, +9.7%]) (Fig. 4b). This
worst-case was obtained when the 50% reduction resulted in a
decrease of 3 sprays (corresponding to an initial number of sprays
equal to 6). When the decrease in spray number was lower or
higher than 3, the resulting increase in disease incidence was lower

than 5%. In the second scenario (CAL50%), the increase in disease
incidence resulting from a 50% reduction in the number of sprays
was always higher than in the first scenario (DSS50%) and could
reach more than +10% of disease incidence (Fig. 4b). Taken
together, these results indicate that it is preferable to reduce the
number of sprays by adopting the DSS-based strategy.

Discussion
Based on a comprehensive dataset covering major producing
areas and a large number of crops and pathogens, our results
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Fig. 3 Probability distributions of differences in disease incidence
between DSS-based (DSS) and calendar-based (Cal) strategies
considering different observed numbers of sprays. While (a) describes
the distributions of the expected differences across the experiments
included in the dataset, (b) describes the plausible difference values
predicted for a new, not yet conducted, experiment. In each case, three
distributions are reported, corresponding to the first (Q1), second (median)
(Q2) and third (Q3) quartiles of the observed numbers of sprays for DSS (3,
4 and 6) and Cal (4, 7, and 10) strategies in the 80 experiments. Each
probability distribution is summarised by its median, 95% probability
interval and probability of the differences being positive. CrI and PI mean
credibility and predictive intervals, respectively. P(>0) indicates the
probabilities of the differences being positive. All credibility probability
intervals include zero, thus revealing that the use of lower numbers of
sprays resulting from the DSS strategies does not lead to a substantial
increase in disease incidence.
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Fig. 4 Effects of the number of sprays on disease incidences for calendar-
based strategy (Cal), DSS-based (DSS) strategy and untreated controls
(Unt). (a) Differences in estimated disease incidence for Cal vs. Unt (Cal-
Unt), DSS vs. Unt (DSS-Unt) and DSS vs. Cal (DSS-Cal) strategies for
numbers of sprays ranging from 0–25; (b) Differences in estimated disease
incidence resulting from the application of DSS and Cal strategies with a
number of sprays reduced by 50% compared to total number recommended
by the original Cal strategy. In (a), the same number of sprays is considered for
both DSS and Cal, and the green curve reveals that DSS leads to lower levels of
disease incidence than Cal when the same number of sprays are applied with
both strategies. In (b), the curves DSS50%-Cal and Cal50%-Cal indicate the
extent of the increase in disease incidence resulting from a reduction of 50%
of the total number of sprays recommended by the original calendar strategy.
The disease incidence is increased with both DSS50% and Cal50% compared
to Cal, but the level of increase is lower with the former than with the latter.
The different curves describe the posterior medians (solid line) and the 95%
credible intervals (dotted lines) (95% CrI).
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show that DSSs can play an important role in reducing the use of
fungicides while maintaining a high level of crop protection.
Across the 80 selected experiments, the median number of fun-
gicide sprays applied with DSSs was 43% lower compared to
standard calendar-based strategies. Moreover, for a given number
of sprays, DSS-based fungicide programs were equally and even
more effective (by up to 5.5%) for disease control. More specifi-
cally, a higher efficacy was observed for DSSs when the number of
spray applications was relatively low (<4). When the number of
sprays increased, both DSS-based and calendar-based strategies
showed similar disease control efficacy (Fig. 4a). The good per-
formances of DSSs can be explained by the fact that, with DSS,
spray timing is based on the observed or predicted risk of disease,
allowing farmers to apply fungicides when they are most effective
during the growing season. In contrast, with calendar-based
strategies, spray timing is preset without considering the changes
in disease dynamics, leading to suboptimal treatments. In the case
of low numbers of sprays, DSSs can target the optimal application
periods better to halt disease progress, while some risk periods
may be missed with calendar-based programs. When the number
of sprays increases, calendar-based programs may then also cover
all the risk periods, but at a cost of applying unnecessary high
numbers of sprays.

Our study shows that the goal of a 50% reduction in the
number of fungicides (as envisioned by the ‘from farm to fork’
strategy of the European Green Deal11) is not a utopia. When the
number of sprays was reduced by 50% with DSSs compared to
recommended calendar strategies, the increase in disease incidence
never exceeded +5%. Considering the major economic savings
and reduced environmental impacts obtained by halving the
number of sprays, this increase in disease incidence can be con-
sidered bearable. With the calendar-based programs, a 50%
reduction in the number of sprays resulted in a higher increase in
disease incidence of about +10%. Although twice as high as the
level obtained with DSS, this effect also remains relatively small,
i.e., much smaller than the level of 50% that would have been
reached in the case of a one-to-one relationship between spray
number and disease incidence. This result can be explained by the
fact that the recommended calendar programs are probably
overdosing fungicides. Importantly, we found our results robust to
several important factors, such as the geographic location of the
experiments, the taxonomic groups (necrotrophic or biotrophic
lifestyles, dispersed by wind and water, causing monocyclic,
polycyclic and polyetic diseases with rather different epidemiolo-
gical traits), the type of host (woody and non-woody hosts) and
the types of fungicide (Supplementary Tables S3 and S8).

Despite substantial progress in spray application methods with
dose adjustment and reduced spray volumes to maximise cov-
erage while minimising drift12, the amount of fungicides sold
annually in the EU increased by up to 11% over the last decade1.
Substantial reductions in the amount of fungicides applied can
therefore only be achieved by constraining the number of appli-
cations, which also results in greater economic savings than by
just reducing spray volumes. Our study clearly shows that this is a
realistic strategy. The use of fungicides in agriculture may be
further reduced if DSSs are integrated with other disease man-
agement methods, now facilitated by the advent of precision
farming. For instance, agronomic practices such as canopy
management, crop sequences and timing can reduce disease
pressure and thus the need for fungicide sprays. In the short term,
the dependency of fungicides can be greatly reduced with the use
of resistant cultivars. Nevertheless, those cultivars are typically
bred for monoculture systems where pathogens are under intense
selection pressure. Host resistance can be also exploited to design
diversified farming systems with cultivar mixtures and intercrops,

resulting in more durable plant resistance and fungicide
efficacy20.

The reduction in the use of fungicides is not only an issue in
conventional agriculture, but also in organic production. Control
of airborne diseases by means of fungicides can be even more
demanding in organic farming because the plant protection
products allowed are often less effective3. Of the 164,345 tonnes
of fungicides sold in 2018 in the EU, 86,231 tonnes (52%) were
inorganic fungicides1 (i.e., copper and sulphur), which are
allowed in organic production. The ‘from farm to fork’ strategy of
the European Green Deal11 aims to boost the amount of agri-
cultural land under organic farming in the EU from 7.5–25% by
2030. Under this scenario, DSSs will become even more impor-
tant for optimising treatments against fungal diseases as appli-
cations of fungicides need to be timed as precisely as possible on
organic farms due to the relatively low efficacy of the products
available3.

Disease prediction models and action thresholds are essential
components of DSSs for plant disease control. Empirical and
mechanistic models are often evaluated (i.e., validated) by com-
paring predictions against independent disease observations15.
Model evaluation can be performed for instance by monitoring
disease progress or exposing trap plants. Proper evaluation is an
essential step to assess the reliability and generalisation of the
disease model under different situations. However, the evaluation
of DSSs should not be restricted to the evaluation of disease
models and should also consider the assessment of the action
thresholds determining appropriate deployment of disease man-
agement measures21. The evaluation of DSSs also integrates fac-
tors related to data availability and communication, fungicide and
spray performance, among others, which in certain situations
may be more important than the disease prediction model itself.
DSSs may sometimes be released onto the market without proper
evaluation, resulting in inefficient disease management actions
undermining their trustworthiness and rate of adoption15. Proper
evaluation of DSSs is typically performed by comparing disease
intensity (i.e., incidence or severity) of a DSS-driven fungicide
spray schedule with that of a routine calendar program and an
untreated control21, as was the case in all the experiments
included in our meta-analysis.

The fungicides and modes of action included in our meta-
analysis represented all FRAC19 categories in relation to the risk
of developing resistance. The database included mainly programs
involving non-systemic fungicides (n= 42) and combinations of
non-systemic and systemic products (n= 31). Only n= 7
experiments included programs with systemic fungicides alone.
These fungicides generally act against single biochemical targets
and are thus considered of medium or high risk for the devel-
opment of resistance19. The application of fungicides with more
than one mode of action, either in mixtures or in alternation, is
recommended for resistance management. Typically, single-site
systemic fungicides were combined with multi-site non-systemic
ones with a low risk of resistance2. However, due to their asso-
ciated non-target effects, multi-site fungicides often present
higher ecotoxicity than single-site compounds and so they are
being progressively withdrawn.

With the increasing use of single-site fungicides, fungal resis-
tance development and the subsequent loss of efficacy of fungi-
cides are of increasing concern2. In addition to reduced
application dose and the combination of different modes of
action, a limitation in the number of applications is also essential
for the effective management of fungicide resistance. In fact, for
some groups of fungicides, the maximum number of applications
per season is already strictly limited in order to slow down the
build-up of resistance. The reduction in the number of sprays
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minimises the exposure time and the overall selection for fungi-
cide resistance14. Therefore, in addition to lessening the envir-
onmental and economic costs of disease control, a reduction in
the number of sprays based on DSSs could substantially diminish
the risk of developing resistance, thereby prolonging the effective
life of the fungicides, with a limited increase in disease risk.

A number of the selected publications with experiments
comparing an untreated control with the calendar and DSSs
fungicide programs were not included in our meta-analysis
because the sample size was not reported (n= 45) (Supplemen-
tary Fig. S10), thus precluding the weighting of the individual
studies. Sample sizes in the experiments included in our meta-
analysis were relatively large, ranging from 80–1500 with a
median of 500 (Supplementary Information). Our database cov-
ered practically the full range of disease incidence values (from
1.5–100%), representing different disease pressure scenarios.
Studies reporting disease severity or derived metrics, such as the
area under the disease progress curve (AUDPC), were not
included (n= 28) (Supplementary Fig. S10). While disease inci-
dence is the number of diseased plant organs in relation to the
total number evaluated, disease severity is the proportion or the
actual host area affected. Disease severity is typically evaluated
using standard area diagrams, disease scales or ordinal rating
scales22. However, severity measurements are not standardised.
Depending on the study, the intervals, ranges and ratings used
differ greatly among diseases and even for the same disease.
Moreover, they seldom represent equal gradations of the under-
lying continuous disease severity scale. This leads to serious sta-
tistical constraints when, as in our meta-analysis, experiments
using different disease severity assessment methods should be
combined. In contrast, analysing disease incidence is relatively
straightforward and robust statistical methods can be applied
based on generalised linear mixed models. Moreover, in the case
of fruit and vegetables, disease incidence is more informative than
severity in relation to loss in marketable yield, since the presence
of just a few lesions makes this produce out of grade23.

After more than a decade with Directive 2009/128/EC in force,
official reports noted the limited implementation of the measures
to achieve a more sustainable use of pesticides in the EU24. Action
thresholds and reduced application frequencies were among the
measures with a relatively low level of adoption25. Growers’
aversion to risks has been pointed out as one of the main reasons
for the limited implementation of DSSs26. Adoption of DSSs is
even more restricted in intensive high-input crops, because the
consequences of a disease outbreak by missing a spray (i.e., false-
negative case) sometimes exceed the economic benefits of redu-
cing the number of fungicides applications13,27. Indeed, the use of
fungicides is highly dependent on the crop, with dosages ranging
from 0.2 kg ha−1 in arable crops to 11.3 kg ha−1 in fruit and
vegetables in the EU28. Consequently, different degrees of adop-
tion of DSSs depending on the crop may have a considerable effect
on the overall reduction in fungicide use. Nevertheless, our study
indicated that crop or pathogen types (Supplementary Table S8
and Supplementary Fig. S8) did not have a substantial impact on
the risk of disease when halving the number of sprays, suggesting
that perceived rather than actual risks are likely driving growers’
cautiousness regarding the adoption of DSSs. Those perceived
uncertainties in the timing of fungicide applications can be nar-
rowed down by increasing the amount of timely and spatially
explicit data on the weather and the onset of disease outbreaks
available to growers16. Furthermore, it is essential to deploy DSSs
with a high degree of credibility, after proper calibration and
evaluation. The involvement of growers in the process of DSS
development through a participatory approach is also an inter-
esting and promising avenue15. Finally, the new European Green
Deal11, through its major role in reshaping the EU common

agricultural policy, will certainly set the scene for a much wider
adoption of DSSs and more sustainable disease management.

Methods
Data collection. A comprehensive dataset was constructed to synthesise and
quantify the effects of DSS-based fungicide programs as compared to calendar-
based programs in terms of the number of spray applications and disease incidence.
Relevant studies were identified in August 2019 by searching i) Web of Science
(WoS) and ii) Fungicide and Nematicide Tests (F&N Tests and Plant Disease
Management Reports) by the American Phytopathological Society. Multiple search
strings based on different combinations of keywords were used for the literature
search (Supplementary Table S4). Additionally, our search also included relevant
studies found in the reference lists of the selected studies. A PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses29) diagram (Supple-
mentary Fig. S10) was included to present the details of the selection procedure.

To be included in the database, the published experiments had to satisfy the
following criteria: (i) at least one untreated control (Unt), one calendar-based
strategy (Cal) and a DSS-based strategy (DSS) were tested; (ii) disease incidence
(i.e., the proportion of diseased organs); (iii) sample size (i.e., the total number of
organs evaluated) and (iv) number of fungicide spray applications were provided
for the untreated control and for each fungicide strategy. The final database
included data on 80 independent experiments reported in 22 published articles that
evaluated 80 untreated controls, 99 calendar-based strategies and 149 DSS-based
strategies. The number of independent experiments in each publication varied
from 1 to 11 and the number of plots within an experiment ranged from 3 to 7
(Supplementary Table S1). A unique identifier was assigned to each experiment
and the following data were also extracted: location (country, state, locality), year,
crop, pathogen, disease, fungicide, plant organ evaluated, experimental design,
number of replicates and other relevant characteristics (Supplementary Data 1).
However, as described below, only country, crop, pathogen and fungicide type were
used as moderator variables in the meta-analysis.

Data preparation. Four moderator variables at the experiment level were defined
based on the data provided by (i) location, (ii) crop, (iii) pathogen and, (iv) fun-
gicide (Supplementary Table S3). Based on experiment locations, three continents
were distinguished: Europe, North America and South America. Two crop types
were considered, namely woody and non-woody crops. Finally, five classes of
pathogens were distinguished: Dothideomycetes, Sordariomycetes, Leotiomycetes,
Agaricomycetes and Oomycetes. Fungicide programs were allocated to three
categories2: non-systemic, systemic and non-systemic/systemic. The last category
included programs combining non-systemic and systemic fungicides.

Meta-analyses. We performed two independent meta-analyses: (i) a meta-analysis
of disease incidences under the different control strategies (MI), which was con-
ducted to quantify, synthesise and compare disease incidences for DSS-based,
calendar-based strategies and untreated controls and (ii) a meta-analysis relating
disease incidences to the number of sprays under the different control strategies
(MIS), which was conducted to quantify, synthesise and compare the effect of the
number of sprays on disease incidences between DSS-based and calendar-based
strategies.

Based on Lázaro et al.30, where frequentist and Bayesian models were
compared, here both meta-analyses (MI and MIS) were specified considering beta-
binomial mixed-effect regression modelling framework31. Beta-binomial models
are more adequate than the binomial generalised linear models used by Lázaro
et al.30 to deal with overdispersed observations32–34, which result in discrepancies
between the theoretical and empirical variances. Both MI and MIS were based on
the following beta-binomial distribution:

Yij � Bin ðnij; θijÞ; ð1Þ

θij � Beta ðμij ϕ; ð1� μijÞ ϕÞ; ð2Þ
where Yij denotes the number of diseased organs in the plot j in the experiment i
out of a total of nij organs evaluated. Yij is assumed to follow a binomial
distribution with a probability of disease incidence θij, which in turn is assumed to
follow a beta distribution with mean and precision parameters μij and ϕ,
respectively. The expression of μij was different in MI and MIS, as shown below.

Meta-analysis of disease incidence under different control strategies (MI). The MI
baseline model (MI0) was defined as,

logit ðμijÞ ¼ log
μij

1� μij

 !
¼ ðβ0 þ b0ðiÞÞ þ ðβcal þ bcalðiÞÞ IcalðijÞ

þ ðβdss þ bdssðiÞÞ IdssðijÞ;
ð3Þ

in which the logit of the mean of the disease incidence (μij) is expressed as a linear
function of two dummy variables, Ical(ij) and Idss(ij), equal to one if plot j in
experiment i corresponds to a calendar-based or DSS-based strategy, respectively,
and to zero otherwise. The fixed parameters, βcal and βdss, define the population
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fungicide treatment effects of the calendar and DSS strategies in relation to the
untreated control, β0. The model takes into account the between-experiment
variability of the effects of the treatment strategies and control through three
random parameters bcal(i), bdss(i), and b0(i) assumed to be multivariate normally
distributed with zero means and a 3 x 3 variance-covariance matrix Σ defined as,

b0 ðiÞ
bcal ðiÞ
bdss ðiÞ

2
64

3
75 � N3

0

0

0

2
64
3
75;

σ20 σ0;cal σ0;dss
σ0;cal σ2cal σcal;dss
σ0;dss σcal;dss σ2dss

2
64

3
75

8><
>:

9>=
>;: ð4Þ

The variances, σ20, σ
2
cal and σ2dss capture the extent of variability between experi-

ments, while σ0,cal, σ0,dss, σcal,dss define the covariances between plots clustered
within the same experiment.

Disease incidence as a function of the number of sprays (MIS). The MIS baseline
model (MIS0) was defined as,

logit ðμijÞ ¼ log
μij

1� μij

 !
¼ ðβ0 þ b0ðiÞÞ þ ðβnspcal þ bcalðiÞÞ nspcalðijÞ IcalðijÞ

þ ðβnspdss þ bdssðiÞÞ nspdssðijÞ IdssðijÞ;
ð5Þ

in which the logit of the mean of the disease incidence (μij) is expressed as a linear
function of nspcal (ij) Ical(ij) and nspdss (ij) Idss(ij), which represent the number of
sprays when plot j of the experiment i is under calendar-based (Ical(ij)= 1) or DSS-
based (Idss(ij)= 1) strategies, respectively. The fixed effects, βnspcal and βnspdss,
capture the population effect of the number of sprays for calendar and DSS stra-
tegies relative to the untreated control, β0. As for MI, the model takes into account
the between-experiment variability of the effects of the treatment strategies and
control through three random parameters bcal(i), bdss(i) and b0(i). These random
parameters are assumed to be multivariate normally distributed with zero means
and a 3 × 3 variance-covariance matrix Σ defined as,

b0 ðiÞ
bcal ðiÞ
bdss ðiÞ

2
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75 � N3
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0

0
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2
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8><
>:

9>=
>;: ð6Þ

Here, the variance-covariance matrix of the random effects is diagonal to ensure
convergence of the fitting algorithm. Note that despite using the similar notation in
MI0 and MIS0 (i.e., as a general rule we used β⋅ for fixed effects and b⋅ for random
effects), those parameters do not capture the same effect in the two models.

Several variants of the models MI0 and MIS0 were fitted in order to investigate
the possible effects of the four moderator variables (i.e., location, crop, pathogen
and fungicide). Specifically, for each moderator variable, two independent models
(without and with the interaction between treatment fixed effects) were built from
Eqs. (3) and (5), respectively. All the meta-analytic models including moderator
variables are described in Supplementary Table S5 for those built from MI0 and in
Supplementary Table S7 for those built from MIS0.

The inference was conducted using Bayesian procedures. Model parameters
were approximated by means of Hamiltonian Monte Carlo (HMC) simulation
methods using the programming language Stan35 via its R interface, RStan
(version 2.19.2)36 and the R package brms (version 2.13.0)37,38. All inference
processes were set under weakly independent prior scenarios considering the
default prior specifications of the brms package. For each model, the HMC
algorithm was run with four Markov chains each including 10,000 iterations after a
warm-up of 5000 iterations to ensure a proper convergence35.

Model evaluation and model selection. Model evaluation, that is, the checking of
the adequacy and performance of all meta-analytic models (Supplementary
Tables S5 and S7) was carried out considering posterior predictive checks. We
evaluated whether the meta-analytic models proposed were able to generate a
database that resembles the observed incidence. Thus, we compared observed
disease incidence vs. the predicted disease incidence by plotting them around the
regression line 1:1. (Supplementary Fig. S6 for MI models and Supplementary
Fig. S8 for MIS models).

Model selection between the baseline models (MI0 and MIS0) and the
corresponding models including moderator variables was accomplished by means
of K-fold cross-validation procedures (K-fold-CV)39. K-fold-CV evaluates the
predictive performance of the model. The principle is to re-fit each model to a
subset of the original database. This approach was implemented with K= 5. With
this setting, all the meta-analytic models were re-fitted 5 times randomly leaving
out 20% of the experimental observations of the original data at each iteration. The
K-fold-CV difference was computed by the combination of the kfold() and the
loo_compare() functions of the R packages brms and loo40, respectively. The
K-fold-CV difference estimates were used to compare the predictive accuracy
between the baseline model and each of the moderator meta-analytic models and
were quantified through a point estimate (Δkfold) as well as its corresponding
standard error (SEΔ kfold). Models with the highest K-fold-CV value (i.e., the highest
accuracy) were preferred but standard errors associated to the difference were also
considered39. Thus, differences not higher than 4 (i.e., Δ kfoldj j⩽4) were
considered negligible regardless of the value of the corresponding standard error.

But differences in the K-fold-CV higher than 4 were considered not meaningful if
these differences were smaller than four times the standard error associated to this
difference (i.e., Δ kfoldj j n SEΔkfold⩽4). If no meaningful differences were
observed, the simplest model (i.e., MI0 or MIS0) was selected based on the
parsimony principle (Supplementary Table S6 for the incidence models and
Supplementary Table S8 for the incidence-number of sprays model). The results of
the model evaluation and selection are available in Supplementary Fig. S6 for MI
models and Supplementary Fig. S8 for MIS models. None of the moderator-based
models showed improved behaviour compared to the baseline models (i.e., MI0 and
MIS0) according to the model evaluation assessment (Supplementary Figs. S6 and
S8) and the model selection criterion (Supplementary Tables S6 and S8). The two
baseline models were thus further considered for the meta-analyses.

Effect sizes. For both meta-analyses (i.e., MI and MIS) we considered the disease
incidence difference (DID) and disease incidence ratio (DIR) as the effect sizes to
assess the efficacy of calendar-based and DSS-based strategies compared to
untreated controls. The fitted models were used to compute effect sizes with two
different approaches: i) by including only the fixed-parameter estimates in order to
compute the expected disease incidence across the experiments included in the
dataset (i.e., expected effect size values) 30,41, and ii) by including both the fixed-
parameter estimates and the random effect estimates in order to predict the disease
incidence for a new experiment, not yet conducted (i.e., the predicted effect size
values)42,43.

Meta-analysis of disease incidence under different control strategies. Considering the
baseline MI model (MI0), the expected disease incidences (in probability scale)
associated with the three fungicide strategies were computed according to Eq. (3),
as follows:

μUnt ¼ exp fβ0g
1þ exp fβ0g

;

μCal ¼ exp fβ0 þ βcalg
1þ exp fβ0 þ βcalg

;

μDSS ¼ exp fβ0 þ βdssg
1þ exp fβ0 þ βdssg

:

ð7Þ

DID were then derived as,

DIDCal�Unt ¼ μCal � μUnt ;

DIDDSS�Unt ¼ μDSS � μUnt ;

DIDDSS�Cal ¼ μDSS � μCal ;

ð8Þ

and DIR as,

DIRCal=Unt ¼ μCal
μUnt

;

DIRDSS=Unt ¼ μDSS
μUnt

;

DIRDSS=Cal ¼ μDSS
μCal

:

ð9Þ

The values of DID and DIR defined above were computed from the posterior
distributions of the fixed parameters and summarised by their medians, 95%
credible intervals (95% CrI) and probabilities of being positive (P(DID>0)) or of
being higher than 1 (P(DIR>1)).

The predicted values (i.e., for a new experiment) were computed according to
Eq. (5), as follows:

μPUnt ¼ exp fβ0 þ b0;newg
1þ exp fβ0 þ b0;newg

;

μPCal ¼
exp fβ0 þ b0;new þ βcal þ bcal;newg

1þ exp fβ0 þ b0;new þ βcal þ bcal;newg
;

μPDSS ¼ exp fβ0 þ b0;new þ βdss þ bdss;newg
1þ exp fβ0 þ b0;new þ βdss þ bdss;newg

:

ð10Þ

where b0,new, bcal,new, bdss,new are the effects for a new experiment computed from
Eq. (3)30,44. Likewise, DID and DIR were computed according to Eqs. (8) and (9)
but based on disease incidence estimates from Eq. (10). They were summarised by
their medians, 95% prediction intervals (95% PI) and probabilities of being positive
(P(DID>0)) or of being higher than 1 (P(DIR>1)).

Disease incidence as a function of the number of sprays. Based on the baseline MIS
model (MIS0), the expected disease incidences in probability scale) were estimated
as a function of the number of sprays for calendar-based (nspcal) and DSS-based
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(nspdss) strategies as follows:

μUnt ¼ exp fβ0g
1þ exp fβ0g

;

μCal ¼
exp fβ0 þ βnspcal nspcalg

1þ exp fβ0 þ βnspcal nspcalg
;

μDSS ¼ exp fβ0 þ βdss nspdssg
1þ exp fβ0 þ βdss nspdssg

:

ð11Þ

Similarly, the predicted distributions were estimated as:

μPUnt ¼ exp fβ0 þ b0;newg
1þ exp fβ0 þ b0;newg

;

μPCal ¼
exp fðβ0 þ b0;newÞ þ ðβnspcal þ bcal;newÞ nspcalg

1þ exp fðβ0Þ þ ðb0;newÞ þ ðβnspcal þ bcal;newÞ nspcalg
;

μPDSS ¼ exp fðβ0 þ b0;newÞ þ ðβdss þ bdss;newÞ nspdssg
1þ exp fðβ0 þ b0;newÞ þ ðβdss þ bdss;newÞ nspdssg

:

ð12Þ

The model MIS0 was used to assess the impacts of several scenarios of reduction
in pesticide use (i.e., reduction of nspcal and nspdss):

● Disease incidences were obtained for the first (Q1), second (median) (Q2)
and third (Q3) quartiles of the observed numbers of sprays for the DSS (3,
4 and 6) and calendar (4, 7, and 10) strategies in the observed experiments.
The difference between the two medians corresponds to a 43% reduction in
the number of sprays with the DSS strategy compared to the calendar
strategy.

● Disease incidences obtained across the whole range of values of the number
of sprays observed in the database (from 0 to 25 sprays) with the DSS and
calendar strategies.

● Disease incidences with two 50% reduction scenarios: a DSS-based
(DSS50%) and a calendar-based (CAL50%) strategy compared to a 100%
calendar strategy. Specifically, we considered nspdss50%= nspdcal50%= (1,
2, 3, 4, 5, 6, 7, 8, 9, 10) compared to a 100% calendar-based nspdcal= (2,
4, 6, 8, 10, 12, 14, 16, 18, 20). The difference in the number of sprays for
both hypothetical scenarios corresponds to a 50% reduction compared to
the 100% calendar-based strategy.

The estimated and predicted values of DID and DIR were computed adapting
Eqs. (8) and (9) to the disease incidence estimates from Eqs. (11) and (12) for each
of the comparisons addressed in each of the scenarios. Posterior distributions of
DID and DIR were summarised by their medians, 95% CrI and 95% PI. Posterior
distributions of DID and DIR were used to compute P(DID>0) and P(DIR>1),
respectively.

Sensitivity analysis. A sensitivity analysis45 was conducted to evaluate the
behaviour of the Bayesian inferential methods in relation to the setting of prior
specification30,41. The MI models (Supplementary Table S5) as well as the MIS
models (Supplementary Table S7) were also fitted using a frequentist method by
maximum likelihood through Laplace approximation using the glmmTMB()
function of the package glmmTMB46 implemented in the R software47. Model
parameter estimates between the Bayesian and the frequentist approaches were
compared (Supplementary Fig. S11 for the MI models and Supplementary Fig. S12
for the MIS models). The sensitivity analysis revealed that the results were robust.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information. Supplementary Data 1 contains the
raw dataset and it can also be found on Zenodo using the following https://doi.org/
10.5281/zenodo.5571593

Code availability
The R-Code developed to reproduce and replicate the statistical analysis can be found on
Zenodo using the following https://doi.org/10.5281/zenodo.5571614
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